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We consider the creeping motion of a thin layer of a nonvolatile viscous fluid .spreading due 
to capillaw forces over a rigid surface covered by a thin homogeneous film (microfilm). The 
i~fluence of van der Waals forces on the asymptotic slope of the free boundary of the layer 
is studied in the region of large thickness, where capillary forces dominate. A solution of th, e 
problem of the slope angle "is obtained for the entire possible range of the microfilm thickness. 
In the limit of small thickness of the microfilm, this solution is in agreement with the well- 
known solution of the problem of the dynamics of wetting of a dry surface in the presence 
of a precursory fibn and van der Waals forces. The role of the condition at the end of the 
precursozTI film is studied. 

1. Basic  E q u a t i o n s .  In a small neighborhood of a relatively large mass of a fluid spreading over a 
rigid surface, small-scale flow can be nearly steady. In this case, the  outer  length scale of this large mass of 
the fluid can be considered infinite. We shall determine the inner asymptot ic  form of the free surface, whi('h 
is necessary ibr solving various outer t)rot)lems of the (lynanfics of wetting. We consider the free surface of a 
thin layer of a viscous fluid on a fiat rigid surface in creeping mot ion when the layer passes to the relatively 
bwge m ~ s  of the fluid at one emt and, at the other end, it l)ecomes a thin homogeneous fihn (nficrofilm) of 
small thickness (Fig. 1), which is rather large re, lative to the molecule's size. Motion of the fluid layer under 
van (ler Waals and capillary forces is governed by the equation [1] 

d:~h, A' dh, 31cv ( h -  h+) = O. (1.1) 
~r dx:-- 2 27rh a dx h 3 

Here h is the layer thickness (]dh/dx I << 1), v is the velocity, tt+ is the  microfihn thickness, a is the surface- 
tension coefficient, It is the dynamic viscosity, and A t is Hamaker 's  constant [2] (we assume that  A' > 0). The 
nficrofihn thickness must not exceed 10 -z m in order that  the contr ibution of van der Waals forces to the 
effective pressure inside the film equals -At/(67rh:~). The thin-layer approximation requires that  the capillary 

number (Ca = #v/a)  be sufficiently small. 
Otto n~ds  to find a solution of Eq. (1.1) that is unbounded (h --~ ~ )  ms x --~ - c ~  and satisfies the 

boundary conditions 

d2h 
dx 2 --, 0, x --~ -~c ,  h -~ h+, :r --- + ~ .  (1.2) 

The ibrm of the fluid layer in the region of large thickness (h --~ ~c) is of p r imary  interest. In this 
region, in the case of zero static contact angle, the angle (t of the free-1)oundary slope (local dynamic contact 

angle) h ~  the well-known ~symptotic form [1, 3] 

e~3= - d x  = 9 C a  I n - - - -  In In , In 75->>1-  (1.3) 
h',,, 3 h,,, 
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Fig. 1 
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The  problem is to determine the unknown parameter of the asymptotic form h~. 
We introduce the dimensionless variables [1] 

= xhml (3Ca)  t/3, y = h,/hm, h,m = ( A ' / ( 2 ~ a ) ) l / 2 ( 3 C a ) - l / 3 .  

Then,  problem (1.1) and (1.2) becomes 

,, yl Y--Y+ = 0 ,  y+ h+ y ,  
Y y4 y3 = t-~m' ' --+ O, ~ -'~ --00. ,qt ---+ O, 

The  last condition is equivalent to the conditions y --+ y+ and ~ --+ +,zc. 
The asymptot ic  form (1.3) corresponds to 

( y y - d ( /  = 3 1 n ~ - l n l n ~ + ' " ;  

h' ,  = Ch, , , .  C = C(u+). (1.7) 

The unknown dimensionless parameter  C can be found from the solution of the boundary-vahm problem 
According to (1.6) [or (l.3) and (1.7)], this parameter  determines the effect of the nficrofihn on the 

following [1], for 'I) we write 

(1.5) .  
slope of the free surface which varies slowly with distance from the rigid body. 

2. M e t h o d  o f  S o l u t i o n .  To solve the boundary-value problem, we use calculations of the problems 
with initial conditions taken for the asymptotic form for large h. 

~Ve note that,  according to (1.6), for a specified value z = In ( g / C )  >> 1, the error of calculation of the 
constant  C is much higher (3z times) than the error of calculation of the angle (~. Therefore, if one takes 
account  of two terms in the asymptotic relation (1.6), it is necessary to use l~ge values of h/h~m = y / C  
105-106 for reasonable accuracy of calculation of C. 

In order tha t  the asymptotic solution can be used for much smaller values of y / C  (of the order  of 
103-10~), it is necessary to use high-order terms of the expansion of c~(z) for z = In (h/h,~m) >> 1 in calculations. 

This  expansion is obta ined from the equation 

y m =  1/y2. 

A rigorous substant iat ion of the asymptotic solution was given in [1], where this equation was reduced to the 

first-order equation 

dY 1 
du Y u, 

alld C = const. 
- -  ~ j  

1 ( dy'~3 h 
,I)(z) = ~ - --~(, , z = In - - .  (2.1) 

h '  m 

(I)' = 1 + q)" - q)r2/(3'I)). (2.2) 
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(1.4) 

-+ (1.5) 

du dy 
where Y = u d S '  d~ 

Using the w~riables 



With  allowance for the first boundary  condition (1.5), this equation for z >> 1, as the equation in [1], is solved 

by the  i terat ion method.  As a result, we have 

N 

tiP= z - ~ q + ~'~(ao,,q" "3y ( l l l t q  t t - I  - } ' - . . .  2t- a n n ) ~ . - n  -~ - . . . .  

(2.3) 

C = C~y+,  Ct = 1.891+0.57/(y~_ +0.18) ,  y+ > 1, h: n = CLh+. (3.4) 

Figure  2 shows resul ts  of calculation of the function C ( y + ) .  Plots of functions (3.3) and (3.4) coincide 

with the  curve in Fig. 2. 
T h e  slope angle of  the free boundary depends on the i)arameter b.~n = Chin = Clh.+. The role of van  

der VCaals fbrces is significant for b+ ~ h,m. It  is important  tha t  in the limit y+ ~ 0 (h+ << h,,).  the sohtt ion 

is in agreement  with the  solution of the problem of wetting of a dry surface [1]. The value C = 1.085 is close 

to the  value C = 1 [1]. For snmll b+/b, , , ,  we ha~x' h',,, ~ b,,, + h+. 
In  the case of y+ >> 1 (b+ >> h,,,,), where the layer dynamics is determined by caI)illary forces r a the r  

than  van  der ~V~tals forces, the constant Ct = 1.891 is (:lose to the x~flue 1.84 obtained in [1]. 
T h e  solution ol)tained is bounded 1)y fairly small values of the slope angle (a  << 1), for which hm is 

large in comparison with  the mohwule's size [1]. 
%Ve note that  for h ,,- h+,  the flow in the microfihu region (h,+ << h,,,) does not affect the solution in 

the region h >> h+, which is the same as for the wetting of a dry surface. Therefore, the end of the precursory 

fihn has  no effect on the  relatively thick par t  of the fihn. It  is of interest to compare  this result with the case 
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q = In z. N >~ 1. 

The  coefficients ai,, (i = 0, 1 . . . . .  r~) in (2.3) are calculated for N = 5: 

q -  4 ( q -  5) 2 + 18 2q 3 - 15q 2 + 3 0 0 q -  1101 
~I> = z - 1 q + ~ + 54z 2 + 486 z 3 + . . . .  (2,4) 

Tl te  first three t e rms  in (2.4) correspond to the similar solution for u ( z )  = - y '  obtained in [1]. Using 

the f i rs t-order  equation for Y(u) ,  we obtain an expansion of S ( u )  as u ---* - o c  that  is equivalent to (2.4): 

4 . 0  833  0 
= 5 ~ + 3-~t 3 + 6u - - '1 /+  9u - - ~  + ~ + 15',L 1"-------~' + . . . .  

T h e  asymptot ic  solution (2.4) for 'b (2.1) (or the last expansion) ensures that  the condition y"  ---, 0 as 

z ---* ~ holds. To satisfy the  second boundary  condition in (1.5), we used the shooting method in calculations 

with the  initial da ta  for large !I ol)tained from (2.4). To calculate the constant C with an accuracy of the  
order  of  10 -a  for z >~ 10, it suffices to take into account four terms in (2.4). 

3.  E f f e c t  o f  t h e  M i c r o f i l m  T h i c k n e s s  (h+)  o n  t h e  P a r a m e t e r  h '  m o f  t h e  A s y m p t o t i c  S l o p e  

A n g l e  ~ .  Let us obta in  expansions of C ( y + )  for small and large y+. For small g+, we can write 

c = c0  + ay+ + . . .  (y+ << 1), (3.1) 

where a and p are constants .  For large y+, we rewrite; Eq. (1.5) in terms of the variables 

f --_ y/!]+. ( t  = ~/f]+, . . . .  f3 f , , ,  _ f , ( f y + ) - I  _ f + 1 = (). 

Here y+-  << 1 and, therefore,  

C,  = C/:j+ = b + d / ( y ~  + g) + O(:J+ ~) (y+ >> 1), (3.2) 

where b, d, and g are constants .  
Numerical  calculat ions of problem (1.5) using (1.6) yield the following fi)rmulas corresl)onding to (3.1) 

and (3.2): 

C = 1.085 + y+ + 0.29y+, y+ = t~+/h,,, < 1: (3.3) 
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of  perfect  wetting where the thickness of an equilibrium fihn is minimal [4, 5], i.e., the fihn ends abrup t ly  at 
h ~ h,.. 

We carried out  calculations of the end effect taking account of the minimum thickness h. for a dry  
surface. The minimum thickness h. was determined using the asymptotic solution for h --, 0 when Idh/dx[ ---, 
oc in accordance with the following equation (see, e.g., [6]): 

( O h "~'2 A 2 ,,X '2 A ' 
Ox / - 3-~,'-' h-~ +'"  h,---, O, A2 _ " ' 27r~r" 

The constant C, which, according to (1.4) and (1.7), defines the constant h~n of the asymptotic slope of 
the  free-t)oundary (1.3) versus the parameter  y, = h, /hm,  is shown in Fig. 3. For h, < 0.45hm, the constant  
C differs from 1 by less than 0.1 (C > 0.93), i.e., it is almost independent of the nfinimum thickness h , .  In 
this case, there exists a region of the precursory film where h ~ cons t / (x  - x0). If h, ,~ h,,, the precursory 
fihn does not exist. Therefore.  the closeness of the constant C to unity (h, < 0.45hm) is. at the same time, 
the  condition for the  existence of ' the precursory fihn. The conclusion of [1] that C ~ 1 is v~fiid as long as a 
precursory fihn ~xists, irrespective of the minimum thickness h,.  The  minimum thickness h, (as well as the 
inicrofihn thickness) does not affect the magnitude of the dynmnic contact angle in flows with a precursory 
f lm .  Therefore, the modePof  [1] for the transition from a precursory film to a h\ver moving under capil lary 
forces is valid independent ly  of the end effect, i.e., the mo(lel is general. 
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