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DYNAMIC CU.~TACT ANGLE FOi:. . TTING
OF A SURFACE BY A VAN DER W.:ALS FLUID

0. V. Voinov UDC 532.5

We consider the creeping motion of a thin layer of a nonvolatile viscous fluid spreading due
to capillary forces over a rigid surface covered by a thin homogeneous film (microfilm). The
influence of van der Waals forces on the asymptotic slope of the free boundary of the layer
is studied in the region of large thickness, where capillary forces dominate. A solution of the
problem of the slope angle is obtained for the entire possible range of the microfilm thickness.
In the limit of small thickness of the microfilin, this solution is in agreement with the well-
known solution of the prbbl(zm of the dynamics of wetting of a dry surface in the presence
of a precursory film and van der Waals forces. The role of the condition at the end of the
precursory film is studied.

1. Basic Equations. In a small neighborhood of a relatively large mass of a fluid spreading over a
rigid surface, small-scale flow can be nearly steady. In this case, the outer length scale of this large mass of
the fluid can be considered infinite. We shall determine the inner asymptotic form of the free surface, which
is necessary for solving various outer problems of the dynamics of wetting. We consider the free surface of a
thin layer of a viscous fluid on a flat rigid surface in creeping motion when the layer passes to the relatively
large mass of the fluid at one end and, at the other end, it becomes a thin homogeneous film (microfilm) of
small thickness (Fig. 1), which is rather large relative to the molecule’s size. Motion of the fluid layer under
van der Waals and capillary forces is governed by the equation [1]

d*h A dh 3uv

a3 3phidr | B3

Here h is the layer thickness (Jdh/dr| < 1), v is the velocity, hy is the microfilm thickness, o is the surface-

tension coefficient, p is the dynamic viscosity. and A’ is Hamaker's constant [2] (we assume that A’ > 0). The

microfilm thickness must not exceed 107" m in order that the contribution of van der Waals forces to the

effective pressure inside the film equals —A’/(67h?). The thin-layer approximation requirés that the capillary
number (Ca = pu/c) be sufficiently small.

One needs to find a solution of Eq. (1.1) that is unbounded (h — 20) as r — —oo and satisfies the

(h=hy)=0. (1.1)

boundary conditions
d’h
— — 0, T — —00, h — hy. T — +00. (1.2)
dz?

The form of the fluid layer in the region of large thickness (h — oc) is of primary interest. In this
region, in the case of zero static contact angle, the angle « of the free-boundary slope (local dynamic contact
angle) has the well-known asymptotic form [1, 3]

} dh\3 h 1 h h
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Fig. 1

The problem is to determine the unknown parameter of the asymptotic form h,.
We introduce the dimensionless variables [1]

¢C=xh; (3Ca)Y3, y=h/hm, hm=(A")(270))?(3Ca)"/3. (1.4)
Then, problem (1.1) and (1.2) becomes

!

m Y Yy—Y+ _
Yy -m =0
Y Y
The last condition is equivalent to the conditions y — y4 and ¢ — +o0.

The asymptotic form (1.3) corresponds to

h+ N '
o y =0, (— -0, y —0, (- +00. (1.5)
m

’ Y+ =

WY g Y y .
( dC> _31nC lxllnc+..., (1.6)
hl, = Chy,, C =C(y+). (1.7)

The unknown dimensionless parameter C can be found from the solution of the boundary-value problem
(1.5). According to (1.6) [or (1.3) and (1.7)], this parameter determines the effect of the microfilm on the
slope of the free surface which varies slowly with distance from the rigid body.

2. Method of Solution. To solve the boundary-value problem, we use calculations of the problems
with initial conditions taken for the asymptotic form for large h.

We note that, according to (1.6), for a specified value z = In (y/C) > 1, the error of calculation of the
constant C is much higher (3z times) than the error of calculation of the angle «. Therefore, if one takes
account of two terms in the asymptotic relation (1.6), it is necessary to use large values of h/h], = y/C ~
10°-10° for reasonable accuracy of calculation of C.

In order that the asymptotic solution can be used for much smaller values of y/C (of the order of
103-10%), it is necessary to use high-order terms of the expansion of a(z) for z = In (h/h,) > 1 in calculations.
This expansion is obtained from the equation

leI - l/yZ.

A rigorous substantiation of the asymptotic solution was given in [1], where this equation was reduced to the
first-order equation

dY 1

du Y

du di
where Y = u 4 _

u(S), S=1n (%) and C = const.

ds’ d¢c
Using the variables
1 dy\3 h
B(z) = 5( - EZ) =l (2.1)
following [1], for & we write
P =1+0" - d?/(30). (2.2)
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With allowance for the first boundary condition (1.5). this equation for z > 1, as the equation in [1], is solved
by the iteration method. As a result, we have

N
1 n— -

b=z- 37 + "zzzl(ao,,q"’ Fang" N an) T L

(2.3)
g=1z. N2 1.
The coefficients a;,, (i = 0,1,.... n) in (2.3) are calculated for N = 5:
1 -4 (¢—5)2%+18 2¢3—15¢° + 300 — 1101
b=z—~ - - el :

39775 512 1862 * 24
The first three terms in (2.4} correspond to the similar solution for u(z) = —y obtained in [1]. Using

the first-order equation for Y (u), we obtain an expansion of S(u) as u — —oo that is equivalent to (2.4):

| (C)_ly3 o dul 435 M0 7007 83371
MY/ T3Y TS T8 T hdb T 900 T 1202 T 15ub

The asymptotic solution (2.4) for ® (2.1) (or the last expansion) ensures that the condition y” — 0 as
z — 00 holds. To satisfy the second boundary condition in (1.5), we used the shooting method in calculations
with the initial data for large y obtained from (2.4). To calculate the constant C with an accuracy of the
order of 1073 for z > 10, it suffices to take into account four terms in (2.4).

3. Effect of the Microfilm Thickness (h;) on the Parameter h,, of the Asymptotic Slope
Angle a. Let us obtain expansions of C(y4) for small and large y¢. For small y;, we can write

C=0Cq+ayy +pyf_+... (yr < 1), (3.1)
where a and p are constants. For large y.,., we rewrite Eq. (1.5) in terms of the variables
fF=ylyse G=Cluw. PP =FUFy) " —f+1=0.
Here y;Q < 1 and, therefore,
Cr=Clyr =b+d/(y5 +9) +O0W:%  (y+>1). (3.2)

where b, d, and g are constants.
Numerical calculations of problem (1.5) using (1.6) yield the following formulas corresponding to (3.1)
and (3.2):

C =1.085+ Y+ + 0291]1. Y+ = }L+/hm. <1 (3.3)

C=Ciyy, C1=1891+0.57/(y% +0.18), yr>1, hl, =Cih,. (3.4)

Figure 2 shows results of calculation of the function C(y4). Plots of functions (3.3) and (3.4) coincide
with the curve in Fig. 2.

The slope angle of the free boundary depends on the parameter b, = Ch,, = Cih4. The role of van
der Waals forces is significant for iy < fiyy,. It is important that in the limit 4 — 0 (hy < hy, ). the solution
is in agreement with the solution of the problem of wetting of a dry surface [1]. The value C' = 1.085 is close
to the value C' =1 [1]. For small h/h,,, we have I}, = hyp, + by

In the case of y. > 1 (hy > hy,), where the layer dynamics is determined by capillary forces rather
than van der Waals forces, the constant € = 1.891 is close to the value 1.84 obtained in [1].

The solution obtained is bounded by fairly small values of the slope angle (o <« 1), for which h,, is
large in comparison with the molecule's size [1].

We note that for h ~ hy, the flow in the microfilin region (iy < h,,) does not affect the solution in
the region h 3> hy, which is the same as for the wetting of a dry surface. Therefore, the end of the precursory
film has no effect on the relatively thick part of the film. It is of interest to compare this result with the case

668



c C ]
3 1.04
2 0.9 4
1 . : 0.8 T . \
0 1 2y, 0.3 0.4 05 y,
Fig. 2 Fig. 3

of perfect wetting where the thickness of an equilibrium filin is minimal [4, 5}, i.e., the film ends abruptly at
h == h,.

We carried out calculations of the end effect taking account of the minimum thickness h. for a dry
surface. The minimum thickness h. was determined using the asymptotic solution for h — 0 when |dh/dz| —
oo in accordance with the following equation (see, e.g., [6]):

(2@)2=)\—2‘,—¥;+..., h—0, /\2=—i.
oz 3n®  h? 2ra

The constant C, which, according to (1.4) and (1.7), defines the constant 1!, of the asvmptotic slope of
the free-boundary (1.3) versus the parameter y, = h./ly,, is shown in Fig. 3. For h. < 0.45h,,, the constant
C differs from 1 by less than 0.1 (C' > 0.93). i.e., it is almost independent of the minimum thickness h,. In
this case, there exists a region of the precursory film where h & const/(x - xg). If h. ~ h,,, the precursory
film does not exist. Therefore. the closeness of the constant C to unity (h, < 0.45h,,) is. at the same time,
the condition for the existence of the precursory film. The conclusion of (1] that C &~ 1 is valid as long as a
precursory film exists, irrespective of the minimum thickness h,. The minimum thickness &, (as well as the
microfilm thickness) does not affect the magnitude of the dynamic contact angle in flows with a precursory
film. Thercfore, the model-of 1] for the transition from a precursory film to a layer moving under capillary
forces is valid independently of the end effect, i.e., the model is general.
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